
Tutorial : creating a Max/MSP external project for Windows using Visual Studio

Version 1.0 (17th July 2011) by Benoit Bouchez
Reviewed on 5th November 2013 for Max 6 SDK before publishing on Cycling'74 forum.

Introduction
This document is a short tutorial explaining how to create "from scratch" a Visual Studio 
project for a Max/MSP external for the Windows platform. It is not meant to explain how Max 
objects are working, there are enough good examples for that in Max SDK.

I wrote a similar tutorial for writing Max externals on Mac.

Note for release made in 2013: I wrote this document a when I was still using VS2005 and 
Max5. The steps to create a Max 6 external are exactly the same however.

Preparing the computer
I assume that Visual Studio (Express or Developper edition) has been installed on your 
computer and you know how to start and use it. I also assume that Max SDK has been 
downloaded and installed on your hard disk. Personnally, I have created a c:\Max\SDK 
directory where the SDK has been unzipped. 

To avoid mixups with "original" Max externals, I have also created a specific directory where I 
put all the compiled files. Make sure that Max is pointing to this directory by setting file 
preferences, so it will be able to find the externals you have created.

Max / Options / File preferences

Click on "+" to create a new entry, then click "Choose" to select the folder you want to use. If 
you check Subfolders, Max will recurse the selected directory to find all files of interest.

Creating the project in Visual Studio



Start Visual Studio
In File menu, select New then Project. Select Win32 project
Enter the project name (e.g : hd.progchange). You can use here the name which will appear as 
Max external, or use a more symbolic name and define the output filename (which will be the 
external name) later in the project properties.
Click OK when done.

Solution is the name given by Microsoft to a project group. You can choose to create a new 
project group, or use an existing one (to add your project in an already existing solution)

Click Next on the windows which appears then select "DLL" and check "Empty project"



The project (and eventually the solution) is then created. Visual Studio puts the files in the 
directory specified during project creation, which may not fit your personal needs or tastes. In 
that case, close Visual Studio and rearrange the project directories depending on your needs. 
When you reopen the solution file, Visual Studio may indicate that it does not find the project 
anymore. Delete the project you see in the solution explorer (which should be grayed in that 
case), then right click on the solution and choose Add / Existing project. Select the .vcproj file 
you moved manually to make it available in the solution.

If you selected "Empty project" when the project has been created, it is not yet possible to 
define all project properties, since the project does not know what language is used (and is 
then unable to know the related options).

Add the different project source files (if you want to make a quick and dirty test, just pick up 
simplemax.c and simplemax.def files from SDK and put them in your project)

Open the project properties (Project / Properties or right click on the project in the solution 
explorer)

Go to General entry

Select the directory where output and intermediate files will be written by the compiler. I 
personnally use a specific directory, outside from the project, to avoid to copy the compiled 
files when I make a project backup.



Go in the C/C++ entry, then select "General" page
((SCREENSHOT))

Enter the Max SDK include directories in "Additional Include Directories"

 

Go into Preprocessor, and open Preprocessor Definitions

Define preprocessor options for Windows target
WIN_VERSION
WIN_EXT_VERSION



If your external uses the sprintf function, it is recommended to also add 
_CRT_SECURE_NO_DEPRECATE to avoid multiple warnings when compiling.

Go to Linker / General

Define the location and name of output file. This is the name of the Max external, so it 
must be a .mxe!

Define the path to Max external libraries (Linker / General / Additional Library Directories)



Link with Max external libraries (Linker / Input / Additional Dependencies)
MaxAPI.lib
maxcrt.lib

WARNING : I had to "Ignore all default libraries" otherwise I was getting a warning at 
compilation.

Add the module definition file (otherwise the DLL can not be loaded by Max).



You can now compile your external and test it in Max.

And to finish...

Do not forget that two project configurations are created automatically by Visual Studio 
(Debug and Release). You can create yourself other configurations if needed.

You will need to perform the same configuration steps for each project configuration, otherwise 
you will experience compilation errors and warnings when you will want to create a Release 
version.


